

BEDIENUNGSANLEITUNG

BATTERIF-MONITOR BLS

vielen Dank, dass Sie sich zum Kauf des Batteriemonitors BLS entschlossen haben. Sie verfügen damit über einen der modernsten und genauesten auf dem Markt erhältlichen Batteriemonitore.

Sie erkennen auf einen Blick:

- den aktuellen Ladezustand Ihrer Batterie
- Lade- und Entladeströme
- die Batteriespannung
- die restliche Betriebszeit bis zum einstellbaren Kapazitätsalarm der Hauptbatterie
- die Spannung von bis zu 2 zusätzlichen Batterien

und haben die Möglichkeit:

- einen Alarm bei Unterschreiten einer Kapazitätsschwelle der Hauptbatterie
- einen Alarm bei Unter- und Überschreiten einer Spannungsschwelle einzustellen.

Der Batteriemonitor BLS überwacht ständig die Spannung und Strom der Haupt-Batterie und erkennt die Vollladung wie auch deren vollständige Entladung. Dabei werden bei jedem Zyklus die Werte für die Batteriekapazität und die Ladeeffizienz (CEF) angepasst, um eine möglichst exakte Kapazitätsanzeige zu ermöglichen.

philippi elektrische systeme gmbh Neckaraue 19

D-71686 Remseck am Neckar

www. philippi-online.de info@philippi-online.de

Tel: +49 (0)7146/8744-0,Fax-22

1 Allgemeine Information

1.1 Verwendungszweck

Der Batterie-Monitor kann nur in Verbindung mit dem Shunt SHE-300 an Kleinspannung DC 8-16V betrieben werden. Er ist zum Einsatz auf Yachten oder in Wohnmobilen konstruiert und dürfen nur in geschlossenen Räumen, die vor Regen, Feuchtigkeit, Staub und Kondenswasser geschützt sind, betrieben werden. Verwenden Sie die Batterie- Monitor niemals an Orten, an denen eine Gefahr einer Explosion durch Gas oder Staub besteht. Der Batterie-Monitor ist nicht für den Einbau im Außenbereich geeignet.

1.2 Lieferumfang

- Batterie-Monitor BLS
- SHUNT SHE 300
- Steckbare Klemme MCVR3,5-4
- 3 Sicherungshalter ASH1 mit Sicherung FSS 1A
- Diese Bedienungsanleitung

Optionales Zubehör (nicht im Lieferumfang enthalten):

Temperatursensor Temp-BT
 Bestell-Nr.: 0 5900 3000
 Interface für Ladegerät ACE_LIN
 Bestell-Nr.: 0 8000 4975

1.3 Garantie

Garantie wird in dem Zeitraum von zwei Jahren ab Kaufdatum gewährt. Mängel infolge Material- oder Fertigungsfehler werden kostenlos beseitigt, wenn:

- das Gerät dem Hersteller kostenfrei zugesandt wird.
- der Kaufbeleg beiliegt
- das Gerät bestimmungsgemäß behandelt und verwendet wurde.
- keine fremden Ersatzteile eingebaut oder Eingriffe vorgenommen wurden.

Von der Garantie ausgenommen sind Schäden durch:

- Überspannungen an den Eingängen, bzw. falschem Anschluss
- in das Gerät eingelaufene Flüssigkeiten oder Oxydation durch Kondensation
- Blitzschlag

Nicht unter die Garantie fallen Folgekosten und natürliche Abnützung.

Bei Geltendmachung von Ansprüchen aus Garantie und Gewährleistung ist eine ausführliche Beschreibung des Mangels unerlässlich. Detaillierte Hinweise erleichtern und beschleunigen die Bearbeitung. Bitte haben Sie Verständnis dafür, dass wir Sendungen, die uns unfrei zugehen, nicht annehmen können.

1.4 Haftungsausschluss

Sowohl die Einhaltung der Bedienungsanleitung, als auch die Bedingungen und Methoden bei Installation, Betrieb, Verwendung und Wartung des Batterie-Monitors können von philippi nicht überwacht werden. Daher übernehmen wir keinerlei Verantwortung und Haftung für Verluste, Schäden oder Kosten, die aus fehlerhafter Installation und unsachgemäßem Betrieb entstehen.

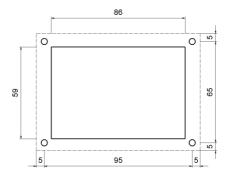
1.5 Qualitätssicherung

Während der Produktion und Montage durchlaufen die Geräte mehrere Kontrollen und Tests. Fabrikation, Kontrollen und Tests erfolgen gemäß festgelegten Protokollen. Jedes Gerät hat seine eigene Seriennummer. Entfernen Sie darum nie das Typenschild. Die Montage und der Test aller Geräte werden vollständig in unserem Betrieb ausgeführt.

2. Sicherheitshinweise

- Es darf keine Veränderung am Gerät vorgenommen werden, sonst erlischt das CE Zeichen
- Der Anschluss des Batterie-Monitors darf nur von Elektrofachkräften vorgenommen werden.
- Vor dem Anschluss des Batterie-Monitors sind die Batteriezuleitungen abzuklemmen.
- Auf die richtige Polung der Batterien achten!
- Die Zuleitung zur Stromversorgung des Monitors und Shunt müssen abgesichert werden.
- Dieses Gerät ist nicht bestimmt zur Benutzung durch Kinder.

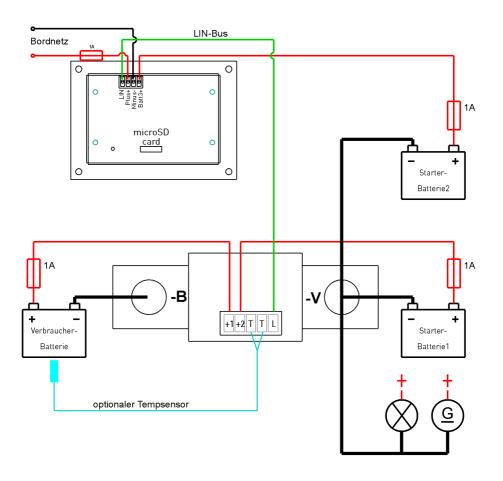
Die vorliegende Montage und Bedienungsanleitung ist Bestandteil der Komponentenlieferung. Sie muss - wichtig für spätere Wartungsarbeiten - gut aufbewahrt und an eventuelle Folgebesitzer des Gerätes weitergegeben werden.


3. Montage und Installation

3.1. Monitor

Montieren Sie den Batterie-Monitor an einer geschützten, trockenen und gut sichtbaren Stelle, damit er jederzeit abgelesen werden kann. Der notwendige Einbauausschnitt beträgt 86x59 mm, die erforderliche Mindesttiefe beträgt 40 mm.

Auf der Rückseite befindet sich eine 4-polige Anschlussklemme zur Stromversorgung des Monitors und der Kommunikationsleitung zu dem Shunt.

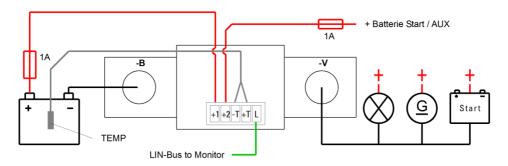

Rückseitig kann über eine Micro-SD Karte ein Software-Update auf den Monitor eingespielt werden.

Die Stromversorgung des Monitors kann jederzeit unterbrochen werden, ohne dass Batteriezustandsdaten verloren gehen, denn diese werden im Shunt SHE 300 gespeichert.

Daher sollte der Shunt SHE 300 dauerhaft mit der Batterie verbunden sein. Ist der Monitor ausgeschaltet so geht der Shunt SHE in den Sleep-mode und der Stromaufnahme des Shunts sinkt auf 2 mA ab. Diese stellt keine besondere Belastung für die Batterie dar. Bleibt das Batterie-System aber länger als 3 Monate ohne Ladung sollte der Shunt ebenfalls von der Batterie getrennt werden. Nachfolgende Abbildung gibt eine Übersicht über den Anschluss des Monitors und dem Shunt SHE 300. Die LIN-Bus Verbindungsleitung zwischen Monitor und Shunt erfolgt über eine 1 adrige Leitung. Diese kann auch einer beliebigen oder vorhandenen Leitung bestehen. Der Kabelquerschnitt sollte aus mechanischen Gründen min. 1mm² und max. 1,5 mm² betragen.

3.2. Shunt

Montieren Sie den Shunt SHE 300 an einer geschützten, trockenen Stelle so nahe wie möglich an der Batterie. Der Shunt muss in den **MINUS**-Pfad der Batterie angeschlossen werden.


Installieren Sie den aktiven Shunt SHE 300 so nahe wie möglich an der Service-Batterie. Vermeiden Sie jedoch, dass der Shunt Kontakt mit dem Plus - Anschluss der Batterien hat. Verbinden Sie die mit B- markierte Seite des Shunts mit dem Minus-Anschluss der Hauptbatterie über ein kurzes, dickes Kabel (35-70 mm²). Verbinden Sie die den Minuspol der bis zu zwei Starter-Batterien mit der mit V- bezeichneten Seite des Shunts.

Hinweis: Falls die Haupt-Batterie aus mehreren parallel geschalteten Batterien besteht, so müssen deren Minus-Pole alle an der mit B- gekennzeichneten Seite des Shunt angeschlossen werden. Die Minus-Kabel der Starter-Batterien werden an der anderen Seite (V-) des Shunts angeschlossen. Wir empfehlen, alle Minus-Anschlüsse der Verbraucher, Ladeeinrichtungen und die Minuspole der Starter-Batterien auf einer Massesammelschiene zusammenzufassen und von dort eine kurze Leitung zum V- Anschluss des Shunts zu legen.

- Verbinden Sie die Messleitung des Shunt mit dem Pluspol der Hauptbatterie über einem Inline Sicherungshalter (1A). Über diese Leitung wird die Spannung der Hauptbatterie gemessen und gleichzeitig der Shunt mit Strom versorgt.

Wichtig ist, dass zwischen Anschluss B- und den Batterie-MINUS-Pol keine weiteren Leitungen angeschlossen werden, da ansonsten nicht alle Ströme erfasst werden und das Batterie-Management nicht arbeiten kann. Alle Leitungen des Bordnetzes incl. der Verbindungsleitung zur Starter-Batterie müssen auf den V- Seite des Shunts SHE 300 angeschlossen werden.

Überwachte Batteriegruppe

Verbraucher, Ladequellen, Starter-Batterien

Nach Anlegen der Batteriespannung am Pin +1 geht der Shunt in Betrieb und zeigt über die integrierte **Leuchtdiode** den Betriebszustand an:

- Schnelles Blinken

Startphase und während Firmware-Update

Aufblitzen jede 1 sec. Normaler Betrieb

- Aufblitzen jede 5 sec. Sleep Mode (Stromsparmodus) wenn Monitor aus

Am Shunt sind folgende Anschlüsse am 5 pol. Steckverbinder vorhanden:

1: Batterie Spannungs-Messleitung (+1) und gleichzeitig Stromversorgung für Shunt

Diese Leitung ist zur Funktion des Shunts zwingend notwendig und sollte nur im Winterlager getrennt werden um eine lückenlose Erfassung der Batteriekapazität zu ermöglichen. Durch die sehr geringe Stromaufnahme im Sleep-Mode stellt der Shunt keine zusätzliche Belastung für die Batterie dar.

2: Spannung (+2) zweite Batteriegruppe

Optionaler Anschluss einer Spannungsmessung einer zweiten Batteriegruppe (Starter-Batterie), diese wird dann als eine zweite Batteriegruppe am Monitor angezeigt.

3: T-: Temperatursensor Minus (schwarze Litze) T+: Plus (blaue Litze)

Optionaler Temperatursensor Temp-BT zur Erfassung der Batterie-Temperatur. Der Temperatursensor sollte außen am Gehäuse der Batterie fixiert werden. Der Temperatursensor hat keinen aktiven Einfluss auf die Kapazitätsberechnung oder Ladung, sondern dient nur zur Information und warnt vor zu hoher Batterie-Temperatur. Wird ein philippi-Ladegerät ACE angeschlossen so wird die Temperaturinformation vom Ladegerät geliefert und ein zweiter Temperaturfühler wird nicht benötigt.

4: LIN-Bus Kommunikation mit Display

Über diese Leitung kommuniziert der Monitor BLS mit dem Shunt SHE 300 und dem Ladegerät ACE

3.3. Interface ACE-LIN (Sonderzubehör, Serie bei BLS-Set-Plus)

Zur Kommunikation des Monitors BLS mit einem Ladegerät der Serie ACE muss in das Ladegerät ACE ein Interface ACE-LIN einsetzt werden. Bei den Modellen ACE 12/60 und ACE 24/30 muss dazu der integrierte Monitor entfernt werden und gegen das Interface ACE-LIN ausgetauscht werden.

Abnahme der frontseitigen Ladegerät-Abdeckung und Vorbereitung der Kabeldurchführung

Deckel entfernen

Ausbrechen der Metallzunge mit einer Flachzange

Finsetzen der Gummi-Kabeltülle

Einsetzen der Abdeckung und der Leitung.

Einsetzen der Interface-Platine ACE-LIN

Stellen Sie sicher, dass das Ladegerät ACE vom AC-Netz getrennt ist bevor Sie mit den Arbeiten beginnen.

Nach dem Entfernen der frontseitigen Abdeckung, muss die Einstellung der DIP-Schalter für den Betrieb mit dem Interface CAE-LIN angepasst werden.

Die ACE Ladegeräte sind mit DIP Schaltern ausgestattet um die Ladekennlinie individuell an die Batterien anzupassen. Nur wenn die DIP-Schalter des Ladegerätes auf ABCD = "1111" gestellt sind, kann die Ladekennlinie vom Monitor BLS aus eingestellt werden. Dann ist es außerdem möglich eine Benutzer-definierte Kennlinie einzustellen. Ansonsten gilt die über die DIP-Schalter eingestellte Kennlinie.

Zum elektrischen Anschluss der Interface-Platine muss der 16 polige Stecker des Flachbandkabels in den passenden roten Steckverbinder auf der Hauptplatine des Ladegerätes ACE eingesteckt werden.

Die Interface Platine wird in durch drei Plastikklammern des Gehäuses festgehalten.

Verkabelung LIN-Leitung zum Monitor BLS / Shunt SHE

Der Kommunikationsanschluss "LIN" des Interface ACE-LIN wird über eine 1-adrige Verbindungsleitung mit dem Anschluss "LIN" des Shunts SHE 300 und dem Monitor BLS verbunden. Dies kann nach den örtlichen Installations-Gegebenheiten entschieden werden. Die Reihenfolge der Geräte auf der "LIN"-Leitung spielt dabei keine Rolle. Da der "LIN"-Anschluss am Interface ACE-LIN doppelt vorhanden ist bietet es sich an eine LIN-Leitung vom Monitor zum Ladegerät und die weitere vom Ladegerät zum Shunt zu legen. Der Ideale Leiterquerschnitt für die "LIN"-Leitung beträgt 1mm².

WICHTIG: Der Monitor, der Shunt und das Ladegerät müssen das gleiche Minuspotential besitzen, das heißt an einen gemeinsamen Minuspunkt (Batterie-Minus) angeschlossen sein.

4. Einstellungen am Monitor

Zum Aufruf der Einstellungen drücken Sie bitte im Hauptbildschirm das Zahnrad Symbol rechts unten

4.1 Passwortschutz (PIN) des Menü Setup

Anschließend erscheint die Abfrage des PIN, welches im Auslieferungszustand "1234" ist. Nach erfolgter Eingabe mit anschließender Bestätigung OK gelangen Sie in das Einstellungen - Menü.

Es können durch Drücken des jeweiligen Symbols folgende Einstellungen vorgenommen werden:

- 1. Anzeige
- 2. Batterie-Management
- 3. Ladegerät-Einstellungen
- 4. Alarme

4.2 Anzeige

Nach Drücken auf das "Display" Symbol erscheint nebenstehendes Bild. Es können nun folgende Einstellungen vorgenommen werden:

Sprache DE/FR/GB...
 Helligkeit max. 20.100%
 Autom. Helligkeit ON/OFF
 Auto Stand by OFF/x min.

PIN ändern
 SW-Version

4.3 Alarm

Ein Batterie-Alarm wird immer im Batteriesymbol angezeigt. Zusätzlich kann zur Visualisierung von Alarmen ein:

- optischer Displaybeleuchtung blinkt

- akustischer interner Summer

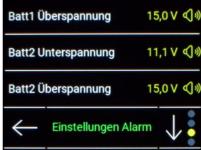
konfiguriert werden. Der optische und akustische Alarm kann immer durch Berühren des Bildschirms vorab quittiert werden, bzw. kann nach einer definierbaren Zeit selbstständig abschalten.

Folgende Alarme sind möglich:

Batterie-Spannungsalarme

Liegt am Shunt an der Klemme (+2) oder am Monitor Klemme (+3) eine Spannung >1V an so wird diese Spannung als eine weitere Batterie angezeigt. Sinkt oder übersteigt die Batteriespannung für 30 s den eingestellten Schwellwert kann ein optischer und ein akustischer Alarm generiert werden. Die möglichen Einstellwerte liegen zwischen 10V und 16V.

Batterie-Kapazitätsalarme


Am Monitor erscheint ein Hinweis die Batterie zu laden (Batterie erscheint rot), wenn die Batterie die eingestellte Kapazitätsschwelle unterschreitet. Kapazitätsalarm (User-level)

Der Wert für die Alarmkapazität ist auf 50% voreingestellt. Für eine durchschnittliche Anwendung ist dieser Wert normalerweise in Ordnung; der Alarm kann jedoch entsprechend den Anforderungen der Applikation eingestellt werden.

Sinkt der Ladezustand weiter ab verschiedene Schwellen: Batterie Reserve (20%) und Batterie Tiefentladung wird je nach Konfiguration ein Alarm ausgelöst.

In Alarm-Menü sind folgende Einstellungen möglich:

optischer Alarm
 Beleuchtung blinkt / aus
 O-255 sec (0 = immer an)

Batterie 1	Kapazitätsalarm	Kapazitäts (%)	akustischer Alarm Ein/Aus
	Batterie Leer (20%)		akustischer Alarm Ein/Aus
	Batterie Tiefentladung (0%)	Changingswort ()()	akustischer Alarm Ein/Aus
	Überspannung	Spannungswert (V)	akustischer Alarm Ein/Aus
	Temperatur max.	Temperatur (°C)	akustischer Alarm Ein/Aus
Batterie 2/3	Unterspannung einstellbar Überspannung einstellbar	Spannungswert (V) Spannungswert (V)	akustischer Alarm Ein/Aus akustischer Alarm Ein/Aus

Durch kurzen Druck der jeweiligen Zeile kann der akustische Alarm ein- bzw. ausgeschaltet werden. Bei langen Druck (> 2s) kann der jeweilige Schwellwert editiert werden.

4.4 Batterie-Management

Zur ordnungsgemäßen Funktion müssen folgende Daten bei Inbetriebnahme eingestellt werden:

Name, Nennkapazität, Nennspannung und Batterietype

War die Batterie zu diesem Zeitpunkt nicht vollgeladen, ist dies zwingend erforderlich diese vollzuladen um die Anzeige mit dem Ladezustand der Batterie zu synchronisieren.

4.4.1 Bezeichnung

Dieser Name wird in dem Batteriesymbol der Anzeige angezeigt und dient der leichteren Zuordnung.

4.4.2 Nennkapazität

Die Nennkapazität der Batterie (1-1999Ah) wird hier eingestellt. Um eine sinnvolle Genauigkeit der Restzeit-Funktion sowie der prozentualen Ladungsanzeige zu erhalten, muss die Kapazität der zu überwachenden Batterie eingestellt werden.

Beachten Sie bitte, dass die Kapazität der Batterie nur eingestellt werden sollte, wenn die Batterien 100% aufgeladen sind, da bei diesem Vorgang die Kapazitätsanzeige auf 100% und alle internen Zähler auf 0 gestellt werden.

War die Batterie zu diesem Zeitpunkt nicht vollgeladen, ist dies zwingend erforderlich um die Anzeige mit dem Batterieladezustand zu synchronisieren.

4.4.3 Nennspannung

Bitte stellen Sie die Nennspannung der Service-Batteriegruppe auf 12V ein, damit die Kapazitätsberechnung ordnungsgemäß erfolgen kann.

4.4.4 Batterietyp

Zur Anpassung der "Batterie leer" und "Batterie voll" Erkennung muss die verwendete Batterieart [GEL, NASS, AGM, Lithium, INDIV] eingegeben.

4.4.5 Ah Wirkungsgrad (CEF)

Jede Batterie hat einen Ah Wirkungsgrad. Das bedeutet, dass mehr Amperestunden in die Batterie eingeladen werden müssen als entnommen werden können. Die Wirkungsgrade von Blei-Batterien liegen zwischen 80% und 95%. Verschlechtert sich der CEF während des Betriebes unter 70%, so bedeutet dies grundsätzlich, dass die Batterie das Ende ihrer Lebensdauer erreicht hat und erneuert werden muss. Die werksseitige Voreinstellung ist 95%. Der CEF wird automatisch im Betrieb mittels einer gleitenden Mittelwertbildung über die 4 letzten Zyklen angepasst.

4.4.6 Zyklentiefe

Die Zyklentiefe gibt an um welchen %-Wert eine Batterie entladen und geladen werden muss damit ein Ladezyklus gezählt wird. Für Starter-Batterien sollte ein Wert zwischen 10-20% und für GEL-Batterien kann bis zu 50% eingestellt werden. Der Wert repräsentiert die Zyklenfestigkeit der Batterie, d.h. wie stark kann die Batterie entladen werden, ohne die Lebensdauer zu mindern.

4.4.7 Peukert Faktor

Die Kapazität von Bleibatterien wird üblicherweise für eine 20-Stunden-Entladung angegeben. Das bedeutet beispielsweise, dass eine 100-Ampèrestunden-Batterie 20 Stunden lang 5 Ampere liefern

kann, bevor die Batterie leer ist. Ist der Entladestrom höher, beispielsweise 10 Ampere, so ist die Batterie nicht in der Lage, die vollen 100 Amperestunden zu liefern. In diesem Fall ist sinkt die Batteriespannung unter die untere Grenze von 10,8 V bei 12V -Batterien, bevor die Batterie ihre Nennkapazität geliefert hat.

Dieser Zusammenhang lässt sich mathematisch mit der Peukert-Gleichung erfassen.

Bei der Restzeitfunktion wird diese Gleichung verwendet, um die Restzeit bei hohen Entladeraten anzupassen. Unter normalen Umständen braucht der Peukert-Exponent nicht verändert werden. Üblicherweise wird für Blei-Batterien, sofern keine abweichenden Werte vorliegen, der Peukert-Exponent auf 1,27, für Lithium-Systeme auf 1,02 eingestellt.

4.4.8 Bezeichnung +2 / Bezeichnung +3

Dieser Name wird in dem Batteriesymbol der Zusatzbatterie angezeigt und dient der eindeutigen Zuordnung.

4.4.10 Device-Info

Es wird die Seriennummer des angeschlossenen Shunts und dessen Soft- und Hardwarestand angezeigt. Über den Punkt UPDATE kann dem Shunt ein Firmware-Update aufgespielt werden, wenn auf der SD-Karte eine entsprechende Datei zur Verfügung steht.

4.5 Ladegerät

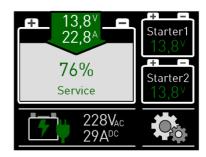
Sobald das Ladegerät mit Netzspannung versorgt wird, kann der Monitor mit dem Ladegerät kommunizieren und es können folgende Einstellungen vorgenommen werden:

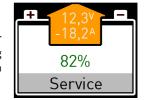

- Ladekennlinie
- Charge Control (Steuerung des Ladevorgangs durch das Ladegerät oder den Batterie-Monitor)
- Info welches Ladegerät angeschlossen (ACExx) und dessen Softwarestand
- Softwarestand des ACE-LIN Interfaces

Die aktuellen Ladeparameter der eingestellten Kennlinie können in den 4 folgenden Feldern abgelesen werden. Ist die individuelle Ladekennlinie gewählt können diese Einstellungen editiert werden:

- Maximale Ladespannung (Boost)
- Max. Boost-Dauer
- Erhaltungs-Ladespannung (Float)
- Stromschwelle in % der Maximalleistung zum Wechsel in die Erhaltungsladung

5. Betrieb


Auf der Hauptseite kann zwischen den 2 Hauptbildschirmen umgeschaltet werden: Batterie / Lademodus, sofern ein philippi Ladegerät ACE mit Interface ACE-LIN installiert ist (BLS-Set Plus). Ansonsten ist nur der Batterie-Bildschirm verfügbar.



Der **Batterie-Bildschirm** zeigt die über den Shunt gemessene Haupt-Batterie links an. In dem Pfeil werden der aktuelle Strom und die Batterie-Spannung angezeigt. Ist der Pfeil grün wird die Batterie geladen, ein roter Pfeil zeigt die aktuelle Entladung an.

Im rechten Bereich des Batterie-Bildschirms erscheinen bis zu zwei Batterie-Spannungen der Zusatz-Batterien. Die Namen und zugehörigen Spannungs-Alarmschwellen können in den Einstellungen angepasst werden.

Die Balkenhöhe der Batterie zeigt den Füllstand der Batterie an. Der untere graue Anteil der Batterie ist der nicht nutzbare Anteil der Batterie-Nennkapazität der bei der letzten vollständigen Entladung festgestellt wurde. Dieser Anteil gibt Aufschluss über den Lebenszustand der Batterie.

Die beiden unteren Tasten haben folgende Funktionen:

AC-Netz: Ist ein Ladegerät ACE angeschlossen so wird die aktuelle Netzspannung angezeigt. Sollte keine Netzspannung am Ladegerät anliegen wird dies entsprechend dargestellt. Durch Drücken dieser Taste wird auf den Ladebildschirm umgeschaltet.

SETUP: Hier können die Einstellungen der Batterieanlage vorgenommen werden. Siehe Kapitel 4.

Mit einem kurzen Druck auf das Batterie-Symbol kann zwischen den Anzeigen – Kapazität in % – Kapazität in AH - Restzeit – Batterie-Temperatur – gewechselt werden. Alternativ erscheinen folgende Fehlermeldungen:

"Nicht synchronisiert"

Der Shunt wurde neu gestartet und der angezeigte Kapazitätswert noch nicht dem wahren Kapazitätsstand entspricht. Dann muss die an den Shunt angeschlossene Batteriegruppe mit einem Ladegerät vollgeladen werden, damit sich die Kapazitätsanzeige mit dem Ladezustand der Batterie synchronisieren kann. Die Meldung erlischt dann automatisch.

"Batterie nachladen"

die Batterie-Kapazität hat die eingestellte Warnschwelle unterschritten. Um eine hohe Lebensdauer der Batterien zu erreichen sollte der Ladevorgang bei nächster Möglichkeit eingeleitet werden.

"Reserve"

die Batterie-Kapazität hat max. 20% Restkapazität unterschritten und muss umgehend aufgeladen werden um die schädliche Tiefentladung zu verhindern

"Batterie leer"

die Batterie ist vollständig entladen und es müssen alle Verbraucher abgeschaltet werden und die Ladung muss umgehend eingeleitet werden um eine weitere Schädigung der Batterie zu verhindern

"Temperatur"

die Batterie-Temperatur ist außerhalb des zulässigen Bereichs

Der **Lade-Bildschirm** zeigt den Betriebszustand des aktiven philippi Ladegerätes ACE. Ist das Ladegerät ACE vom Netz getrennt ist der Bildschirm nicht aktiv.

In dem grünen Pfeil werden der aktuelle Strom und die Lade-Spannung angezeigt. In dem Batterie-Symbol wird die aktuelle Ladephase (Starkladen / Vollladen / Erhaltung) und die Batterie-Temperatur angezeigt. Rechts neben der Batterie werden die vom Ladegerät gemessene Netzspannung und deren Frequenz angezeigt.

Die unteren Tasten haben folgende Funktionen:

Return: Schaltet auf den Batterie-Bildschirm zurück

LIMIT +/-: Um den Ladestrom an die Batterieanlage bzw. einen schwach abgesicherten Landanschluss anzupassen kann der Ladestrom in 10% angepasst werden. Der Minimalwert beträgt 40%.

Night-Mode: Bei den Geräten mit aktivem Lüfter kann dieser abgeschaltet werden um einen geräuschlosen Betrieb zu ermöglichen. Der max. Ladestrom wird dabei an die thermischen Verhältnisse des Ladegerätes limitiert. Diese Funktion wird nach 8 h automatisch deaktiviert.

5.1 Batterie Historie

Durch langes Drücken (2 Sekunden) des Batteriesymbols erscheinen weitere Informationen über die Nutzung der Batterie:

- Anzahl der Ladezyklen
- Anzahl der Tiefentladungen
- Mittlere Entladetiefe
- Tote (nicht nutzbare) Kapazität
- Batterienutzung
- maximaler Ladestrom*
- maximaler Entladestrom*
- Minimale Spannung*
- Maximale Spannung*
- Niedrigste Temperatur*
- Höchste Temperatur*
- * Werte ermittelt aus einem 45 s Intervall)

5.1.1 Ladezyklen

Ein Zyklus wird gezählt, wenn die Batterie um die Kapazität, die in der Zyklentiefe eingestellt ist, entladen und anschließend wieder aufgeladen wurde.

Mit der Anzahl der Zyklen sind sie in der Lage, die Lebensdauer Ihrer Batterie einzuschätzen. Standard Starter-Batterien besitzen eine Lebensdauer von 30-50 Zyklen, während hingegen bei Zyklen-Batterien mit einer Lebensdauer von bis zu 300 Zyklen zu rechnen ist, wenn ein modernes Ladegerät verwendet wird. Diese Werte sind nur bei ordnungsgemäßer Pflege zu erreichen und verschlechtern sich rapide bei Fehlbehandlung.

5.1.2 Tiefentladungen

Jede vollständige Entladung bis zur Spannungsuntergrenze (9-11,5 V je nach Last) wird als eine Tiefentladung gewertet. Tiefentladungen sollten unbedingt vermieden werden, da sie die Batterie schädigen und bei meisten Batterietypen ein vorzeitiger Kapazitätsverlust und Senkung der Lebensdauer zu erwarten ist. Sollte dennoch eine Tiefentladung eintreten, so muss die Batterie umgehend wieder aufgeladen werden, um eine weitere Schädigung zu vermeiden.

5.1.3 Mittlere Entladetiefe

Die mittlere Entladetiefe gibt um welchen Kapazitätsanteil die Batteriegruppe in den vergangen 10 Zyklen durchschnittlich entladen wurde. Daraus lässt sich die Zyklen-Beanspruchung der Batterie ablesen und ein Rückschluss auf die Batterielebensdauer abzuleiten.

5.1.4 Reset der Zähler

Wird ein neuer Batteriesatz eingesetzt, so müssen die Anzahl der Zyklen, der Tiefentladungen auf und der Total-Kapazitätszähler auf Null gesetzt werden. Dazu muss die obere Batterie "000" Taste gedrückt werden und nachfolgend durch PIN Eingabe (PIN Default 1234) bestätigt werden. Die Min/ Max.-Zähler können durch Drücken der unteren "000" Taste und nachfolgenden PIN Eingabe (PIN Default 1234) zurückgestellt werden.

5.2 Funktion der Batterie-Kapazitätsberechnung

Nachfolgend einige Hinweise zur Funktion der Batterie-Kapazitätsberechnung.

5.2.1 Erkennung der Vollladung

Eine Batterie wird als vollständig aufgeladen (100%) eingestuft, wenn in Abhängigkeit der Batterieart [GEL, NASS, AGM, Lithium, INDIV] folgende Bedingungen erfüllt sind.

- z.B. für Blei Säure-Batterien:
- 1) die Ladespannung eingehalten wird (13,4 V) und
- 2) der Ladestrom unter 2% der eingestellten Batteriekapazität gesunken ist und
- 3) die geladene Kapazität größer ist als die vorangegangene entnommene Kapazität.

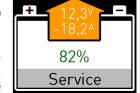
oder

- 1) die Ladespannung eingehalten wird (14,0 V) und
- 2) der Ladestrom unter 1% der eingestellten Batteriekapazität gesunken ist

Werden die Parameter für 3 Minuten erfüllt, so wird der Wert für die aktuelle Kapazität auf 100% zurückgesetzt. Für die anderen Batteriearten gelten an die Batterie-Chemie angepasste Werte.

5.2.2 Erkennung des nicht-nutzbaren Anteils der Batteriekapazität

Fällt die Batterie-Spannung vorzeitig je nach Belastung unter bestimmte Spannungsschwellen, wird der Ladezustand automatisch auf 20 % bzw. bei vollständiger Entladung auf 0% gesetzt.


Dabei wird - sofern möglich - die nicht zur Verfügung stehende Kapazität (Differenz aus Nennkapazität zu entnommener Kapazität) ermittelt und als graue Fläche dargestellt.

Diese graue Fläche kann bei normalen Entladungen kleiner C10 (Strom kleiner Nennkapazität/10) als Indikator für die Alterung der Batterie herangezogen werden.

Bei Hochstrombelastungen im Bereich größer C5 (z.B. Elektroboote (Strom größer Nennkapazität/5)) ist dies als Indikator für die übliche verminderte Kapazität bei hohen Belastungen zu werten.

Die Erkennung der nicht verfügbaren Kapazität ist nur möglich, wenn die Batterie bis zur ersten Entladegrenze (abhängig von Batterietyp & Last, unter ca. Batteriespannung < 11,5 V)

Wird die Batterie niemals bis zu dieser ersten Entladegrenze entladen, kann diese Erkennung nicht stattfinden und es wird von einer 100%ig-intakten Batterie ausgegangen.

Wir empfehlen daher, dies jährlich einmal zum Saisonstart vorzunehmen, um die Leistungsfähigkeit der Batterieanlage zu ermitteln.

5.2.3 Restzeitberechnung

Die Restzeit ist die Zeit, die die Hauptbatterie mit dem aktuellen Stromverbrauch noch verwendet werden kann, bis der Kapazitätsalarm erreicht wird.

Während des Ladens wird die voraussichtliche Ladedauer angezeigt, bis die Batterien zu ca. 95 % aufgeladen sind. Der maximale Wert während eines Entladevorgangs beträgt 99,9 Stunden (> 4 Tage). Die Restzeit wird automatisch unter Berücksichtigung der Peukert - Funktion korrigiert.

5.2.4 Errechnung des aktuellen Ladezustandes

Während des Aufladens wird automatisch der Ah-Wirkungsgrad der Batterie (C.E.F.) bei der Kapazitätsberechnung berücksichtigt. Dabei wird der Ladestrom mit dem C.E.F. Wert (in %) bewertet.

6. Tipps und Tricks

- a) Sollte die Meldung "nicht synchronisiert" trotz 100%igem Vollladen (U > 14,0V und I < 2% der Nennkapazität) der Batterie nicht verlöschen, kann durch Verändern der Batterie-Nennkapazität um 1 Ah dies manuell erzielt werden.</p>
 Bitte prüfen Sie, ob jede Ladequelle richtig erkannt wird. Ladeströme sind immer positiv,
- b) Batterie-Voll-Erkennung funktioniert nicht. Bitte pr
 üfen Sie die Ladespannung Ihres Batterie-Ladeger
 ätes / Solaranlage und stellen Sie die Batterieart auf NASS, um mit den kleinstm
 öglichen Werten zu arbeiten.

wenn gleichzeitig alle Verbraucher abgeschaltet sind.

Bitte prüfen Sie, ob jede Ladequelle stromrichtig erkannt wird, Ladeströme sind immer positiv, wenn gleichzeitig alle Verbraucher abgeschaltet sind. Dies ist für jede Ladequelle einzeln zu prüfen. An dem Minus-Pol der Batterie darf nur der Shunt mit dem B-Anschluss angeschlossen sein, sonst nichts!

7. Software Update

Zum Update der Software des Batterie-Monitors wird eine Micro-SD Karte benötigt. Nach Erhalt der Software müssen die Datei auf die zuvor leere Micro-SD-Karte kopiert werden (ohne Ordner, oberste Ebene).

Zum Update wird die SD-Karte in den SD-Karten-Schacht auf der Rückseite des Monitors eingeschoben und die Stromversorgung vom Batterie-Monitor getrennt. Anschließend wird die Stromversorgung eingeschaltet und der Bildschirm zeigt dass eine neue Software erkannt wurde und diese nun automatisch installiert wird. Während des Update Vorganges wird der Fortschritt angezeigt. Nach dem Update wird die SD-Karte wieder entnommen.

Sollte nach Einlegen der SD-Karte der Monitor normal starten, wurde keine SD-Karte erkannt oder die Software ist auf dem neuesten Stand.

8. Technische Daten

Versorgungsspannung DC 8-16 V

Stromaufnahme Monitor 60 mA bei max. Displayhelligkeit, 5 mA im Sleep Mode

Stromaufnahme Shunt 20 mA , 2 mA im Sleep Mode

Shunt $0,1 \text{ m } \Omega$

Messbereich U1 0-35V, Auflösung 30mV, Genauigkeit 0,25% Messbereich U2 0-35V, Auflösung 30mV, Genauigkeit 0,25%

Strombelastbarkeit Shunt 300A, 600A 1 min, 1500A 0,5 s

Messbereich I, Shunt -600 – +600A, Auflösung 10mV, Genauigkeit 0,5%

Messbereich T (ext. Fühler) -15 – 60°C, Auflösung 1K, Genauigkeit 1K

Abmessungen Monitor B 105 x H 75 x T 40 mm Abmessungen Shunt L 118 x B 40 x H 65 mm

Anschlüsse Shunt Bolzen M8

9. Konformitätserklärung

Dieses Gerät erfüllt die Anforderungen der EU-Richtlinien:

2014/30/EG "Elektromagnetische Verträglichkeit"

Störfestigkeit EN 61000-6-1 Störaussendung EN 61000-6-3

Die Konformität des Gerätes mit der o.g. Richtlinie wird durch das CE-Kennzeichen bestätigt.

10. Entsorgungshinweise

Beachten Sie bei der Entsorgung dieses Gerätes die geltenden örtlichen Vorschriften und nutzen Sie die Sammeldienste/-stellen für Elektro-/Elektronik-Altgeräte.